Linear Least Squares Estimation of Regression Models for Two-Dimensional Random Fields

نویسنده

  • Joseph M. Francos
چکیده

We consider the problem of estimating regression models of two-dimensional random fields. Asymptotic properties of the least squares estimator of the linear regression coefficients are studied for the case where the disturbance is a homogeneous random field with an absolutely continuous spectral distribution and a positive and piecewise continuous spectral density. We obtain necessary and sufficient conditions on the regression sequences such that a linear estimator of the regression coefficients is asymptotically unbiased and mean square consistent. For such regression sequences the asymptotic covariance matrix of the linear least squares estimator of the regression coefficients is derived. © 2002 Elsevier Science (USA) AMS 1991 subject classifications: 62M40; 62J05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation

Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

QSAR Prediction of Half-Life, Nondimentional Eeffective Degradation Rate Constant and Effective Péclet Number of Volatile Organic Compounds

In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...

متن کامل

High - Dimensional Generalized Linear Models and the Lasso

We consider high-dimensional generalized linear models with Lipschitz loss functions, and prove a nonasymptotic oracle inequality for the empirical risk minimizer with Lasso penalty. The penalty is based on the coefficients in the linear predictor, after normalization with the empirical norm. The examples include logistic regression, density estimation and classification with hinge loss. Least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002